出版物

研究業績リスト


査読付き原著論文:
[48] Jing, X., K. Suzuki, H. Guo, D. Goto, T. Ogura, T. Koshiro, and J. Mulmenstadt, 2017: A multi-model study on warm precipitation biases in global models compared to satellite observations. J. Geophys. Res. Atmos., doi:10.1002/2017JD027310, in press.【Link】

[47] Uchida, J., M. Mori, M. Hara, M. Satoh, D. Goto, T. Kataoka, K. Suzuki, and T. Nakajima, 2017: Impact of lateral boundary errors on siimulations of convective systems with a non-hydrostatic regional climate model. Mon. Wea. Rev., doi:10.1175/MWR-D-17-0158.1, in press.【Link】

[46] Tsushima, Y., F. Brient, S. A. Klein, D. Konsta, C. Nam, X. Qu, K. D. Williams, S. C. Sherwood, K. Suzuki, and M. D. Zelinka, 2017: The Cloud Feedback Intercomparison Project (CFMIP) Diagnostics Code Catalogue – metrics, diagnostics and methodologies to evaluate, understand and improve the representation of clouds and cloud feedbacks in climate models. Geosci. Model. Dev., accepted.【Link】

[45] Kikuchi, M., H. Okamoto, K. Sato, Y. Hagihara, K. Suzuki, N. Takahashi, G. Cesana, T. Hayasaka, and R. Oki, 2017: Development of algorithm for discriminating hydrometeor particle types with a synergistic use of CloudSat and CALIPSO. J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD027113.【Link】

[44] Suzuki, K., G. L. Stephens, and J.-C. Golaz, 2017: Significance of aerosol radiative effect in energy balance control on global precipitation change. Atmos. Sci. Lett., 18: 389-395, doi:10.1002/asl.780. 【Link】

[43] Kahn, B., G. Matheou, Q. Yue, T. Fauchez, E. Fetzer, M. Lebsock, J. Martins, M. Schreier, K. Suzuki, and J. Teixeira, 2017: A satellite and reanalysis view of cloud organization, thermodynamics, and dynamic variability within the subtropical marine boundary layer. Atmos. Chem. Phys., 17, 9451-9468.【Link】

[42] Takahashi, H., M. Lebsock, K. Suzuki, G. Stephens, and M. Wang, 2017: An investigation of microphysics and sub-grid scale variability in warm rain clouds using the A-Train observations and a multi-scale modeling framework. J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026404.【Link】

[41] Takahashi, H., K. Suzuki, and G. Stephens, 2017: Land-ocean differences in the warm rain formation process in satellite observations, ground-based observations, and model simulations. Q. J. Roy. Meteorol. Soc., 143: 1804-1815, doi:10.1002/qj.3042.【Link】

[40] Okata, M., T. Nakajima, K. Suzuki, T. Inoue, T. Y. Nakajima, and H. Okamoto, 2017: A study on radiative transfer effects in 3D cloudy atmosphere using satellite data, J. Geophys. Res. Atmos., 121, 443-468, doi:10.1002/2016JD025441.【Link】

[39] Michibata, T., K. Suzuki, Y. Sato, and T. Takemura, 2016: The source of discrepancies in aerosol-cloud-precipitation interactions between GCM and A-Train retrievals, Atmos. Chem. Phys., 16, 15413-15424, doi:10.5194/acp-16-15413-2016.【Link】

[38] Leinonen, J., M. D. Lebsock, G. L. Stephens, and K. Suzuki, 2016: Improved retrieval of cloud liquid water from CloudSat and MODIS, J. Appl. Meteorol. Climatol., 55, 1831-1844, DOI:10.1175/JAMC-D-16-0077.1.【Link】

[37] Lebsock, M., and K. Suzuki, 2016: Uncertainty characteristics of total water path retrievals in shallow cumulus derived from a spaceborne radar/radiometer integral constraints. J. Atmos. Ocean. Tech., 33, 1597-1609, DOI:10.1175/JTECH-D-16-0023.1.【Link】

[36] Lee, H., O. V. Kalashnikova, K. Suzuki, A. Braverman, M. J. Garay, and R. A. Kahn, 2016: Climatology of the aerosol optical depth by components from the Multiangle Imaging SpectroRadiometer (MISR) and a high-resolution chemistry transport model. Atmos. Chem. Phys., 16, 6627-6640, doi:10.5194/acp-16-6627-2016.【Link】

[35] Uchida, J., M. Mori, H. Nakamura, M. Satoh, K. Suzuki and T. Nakajima, 2016: Error and energy budget analysis of a non-hydrostatic stretched-grid global atmospheric model. Mon. Wea. Rev., 144, 1423-1447, DOI:10.1175/MWR-D-15-0271.1.【Link】

[34] Iguchi, T., I.-J. Choi, Y. Sato, K. Suzuki, and T. Nakajima, 2015: Overview of the development of the Aerosol Loading Interface for Cloud microphysics In Simulation (ALICIS), Progress in Earth and Planetary Science, 2:45, doi:10.1186/s40645-015-0075-0.【Link】

[33] Lebsock, M. D., K. Suzuki, L. F. Millan, and P. M. Kalmus, 2015: The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique. Atmos. Meas. Tech., 8, 3631-3645, doi:10.5194/amt-8-3631-2015.【Link】

[32] Leinonen, J., M. D. Lebsock, S. Tanelli, K. Suzuki, H. Yashiro, and Y. Miyamoto, 2015: Performance assessment of a triple-frequency spaceborne cloud-precipitation radar concept using a global cloud-resolving model. Atmos. Meas. Tech., 8, 3493-3517, doi:10.5194/amt-8-3493-2015.【Link】

[31] Kuba, N., K. Suzuki, T. Hashino, T. Seiki, and M. Satoh, 2015: Numerical experiments to analyze cloud microphysical processes depicted in vertical profiles of radar reflectivity of warm clouds. J. Atmos. Sci., doi:10.1175/JAS-D-15-0053.1, in press.【Link】

[30] Kaul, C. M., J. Teixeira, and K. Suzuki, 2015: Sensitivities in large eddy simulations of mixed-phase Arctic stratocumulus clouds using a simple microphysics approach. Mon. Wea. Rev., doi:10.1175/MWR-D-14-00319.1, in press.【Link】

[29] Suzuki, K., G. Stephens, A. Bodas-Salcedo, M. Wang, J.-C. Golaz, T. Yokohata, and T. Koshiro, 2015: Evaluation of the warm rain formation process in global models with satellite observations. J. Atmos. Sci., 72, 3996-4014, doi:10.1175/JAS-D-14-0265.1.【Link】

[28] Kawamoto, K., and K. Suzuki, 2015: Distributional correspondence of 94-GHz radar reflectivity with the variation in water cloud properties over the northwestern Pacific and China. J. Quant. Spec. Rad. Trans., 153, 38-48.【Link】

[27] Christensen, M. W., K. Suzuki, B. Zambri, and G. L. Stephens, 2014: Ship-track observations of a reduced shortwave indirect effect in mixed-phase clouds. Geophys. Res. Lett., 41, doi:10.1002/2014GL061320.【Link】

[26] Kuba, N., T. Hashino, M. Satoh, and K. Suzuki, 2014: Relationships between layer-mean radar reflectivity and columnar effective radius of warm cloud: Numerical study using a cloud microphysical bin model. J. Geophys. Res. Atmos., 119, 3281-3294, doi:10.1002/2013JD020276.【Link】

[25] Suzuki, K., J.-C. Golaz, and G. L. Stephens, 2013: Evaluating cloud tuning in a climate model with satellite observations. Geophys. Res. Lett., 40, 4464-4468, doi:10.1002/grl.50874.【Link】

[24] Nagao, T. M., K. Suzuki, and T. Y. Nakajima, 2013: Interpretation of multiwavelength-retrieved droplet effective radii for warm water clouds in terms of in-cloud vertical inhomogeneity by using a spectral bin microphysics cloud model. J. Atmos. Sci., 70, 2376-2391, DOI:10.1175/JAS-D-12-0225.1.【Link】

[23] Dodson, J. B., D. A. Randall, and K. Suzuki, 2013: Comparison of observed and simulated tropical cumuliform clouds by CloudSat and NICAM. J. Geophys. Res. Atmos, 118, 1852-1867, doi:10.1002/jgrd.50121.【Link】

[22] Kawamoto, K., and K. Suzuki, 2013: Comparison of water cloud microphysics over mid-latitude land and ocean using CloudSat and MODIS observations. J. Quant. Spec. Rad. Trans., 122, 13-24.【Link】

[21] Suzuki, K., G. L. Stephens, and M. D. Lebsock, 2013: Aerosol effect on the warm rain formation process: Satellite observations and modeling. J. Geophys. Res. Atmos., 118, 170-184, doi:10.1002/jgrd.50043.【Link】

[20] Kawamoto, K., and K. Suzuki, 2012: Microphysical transition in water clouds over the Amazon and China derived from space-borne radar and radiometer data. J. Geophys. Res., 117, D05212, doi:10.1029/2011JD016412.【Link】

[19] Sato Y., K. Suzuki, T. Iguchi, I.-J. Choi, H. Kadowaki, and T. Nakajima, 2012: Characteristics of correlation patterns between droplet radius and optical thickness of warm clouds simulated by a three dimensional regional-scale spectral bin microphysics cloud model. J. Atmos. Sci., 69, 484-503.【Link】

[18] Suzuki, K., G. L. Stephens, S. C. van den Heever, and T. Y. Nakajima, 2011: Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci., 68, 2655-2670.【Link】

[17] Stephens, G. L., T. L’Ecuyer, R. Forbes, A. Gettleman, J.-C. Golaz, A. Bodas-Salcedo, K. Suzuki, P. Gabriel, and J. Haynes, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi: 10.1029/2010JD014532.【Link】

[16] Suzuki, K., T. Nakajima, T. Y. Nakajima and G. L. Stephens, 2010: Effect of the droplet activation process on microphysical properties of warm clouds. Environ. Res. Lett., 5, 024012.【Link】

[15] Suzuki, K., T. Y. Nakajima, and G. L. Stephens, 2010: Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci., 67, 3019-3032.【Link】

[14] Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010b: Droplet growth in warm water clouds observed by the A-Train. Part II: A multi-sensor view. J. Atmos. Sci., 67, 1897-1907.【Link】

[13] Nakajima, T. Y., K. Suzuki, and G. L. Stephens, 2010a: Droplet growth in warm water clouds observed by the A-Train. Part I: Sensitivity analysis of the MODIS-derived cloud droplet sizes. J. Atmos. Sci., 67, 1884-1896.【Link】

[12] Suzuki, K., T. Nakajima, T. Y. Nakajima and A. P. Khain, 2010: A study of microphysical mechanisms for correlation pattern between droplet radius and optical thickness of warm clouds with a spectral bin microphysics cloud model. J. Atmos. Sci., 67, 1126-1141.【Link】

[11] Suzuki, K., and G. L. Stephens, 2009b: A possible use of multi-sensor satellite observations for inferring the drop collection efficiency of warm clouds. SOLA, 5, 125-128.【Link】

[10] Sato, Y., T. Nakajima, K. Suzuki, and T. Iguchi, 2009: Application of a Monte Carlo integration method to collision and coagulation growth processes of hydrometeors in a bin-type model. J. Geophys. Res., 114, D09215, doi: 10.1029/2008JD011247.【Link】

[9] Suzuki, K., and G. L. Stephens, 2009a: Relationship between radar reflectivity and the time scale of warm rain formation in a global cloud-resolving model. Atmos. Res., 92, 411-419.【Link】

[8] Suzuki, K., T. Nakajima, M. Satoh, H. Tomita, T. Takemura, T. Y. Nakajima, and G. L. Stephens, 2008: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett., 35, L19817, doi:10.1029/2008GL035449.【Link】

[7] Stephens, G. L., D. Vane, S. Tanelli, E. Im, S. Durden, M. Rokey, D. Reinke, P. Partain, G. Mace, R. Austin, T. L’Ecuyer, J. Haynes, M. Lebsock, K. Suzuki, D. E. Waliser, D. Wu, J. Kay, A. Gettleman, Z. Wang, 2008: The CloudSat Mission: Performance and early science after the first year of operation. J. Geophys. Res., 113, D00A18, doi:10.1029/2008JD009982.【Link】

[6] Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, and K. Suzuki, 2008: Modeling the influence of aerosols on cloud microphysical properties in the East Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme. J. Geophys. Res., 113, D14215, doi:10.1029/2007JD009774.【Link】

[5] Suzuki, K., and G. L. Stephens, 2008: Global identification of warm cloud microphysical processes with combined use of A-Train observations. Geophys. Res. Lett., 35, L08805, doi:10.1029/2008GL033590.【Link】

[4] Suzuki, K., T. Nakajima, T. Y. Nakajima, and A. Khain, 2006: Correlation pattern between effective radius and optical thickness of water clouds simulated by a spectral bin microphysics cloud model. SOLA, 2, 116-119.【Link】

[3] Suzuki, K., T. Nakajima, A. Numaguti, T. Takemura, K. Kawamoto, and A. Higurashi, 2004: A study of the aerosol effect on a cloud field with simultaneous use of GCM modeling and satellite observation. J. Atmos. Sci., 61, 179-194.【Link】

[2] Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai, 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108(D22), 4699, doi:10.1029/2002JD003359.【Link】

[1] Masunaga, H., T. Y. Nakajima, T. Nakajima, M. Kachi, and K. Suzuki, 2002: Physical properties of maritime low clouds as retrieved by combined use of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Visible/Infrared Scanner, 2. Climatology of warm clouds and rain. J. Geophys. Res., 107(D19), 4367, doi:10.1029/2001JD001269.【Link】




査読付きレビュー記事:

[2] Suzuki, K., 2009: A study of aerosol indirect effect with a global cloud-resolving model, Journal of Aerosol Research, Japan, 24, 250-255. (in Japanese)

[1] Suzuki, K., 2003: Review in climate modeling of aerosol indirect effect. Journal of Aerosol Research, Japan, 18, 253-256. (in Japanese)




査読付きプロシーディングス:

[13] Goto, D., Y. Sato, H. Yashiro, K. Suzuki, T. Nakajima, 2017: Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements. AIP Conf. Proc. 1810, 100002, doi:10.1063/1.4975557.

[12] Oikawa, E., K. Suzuki, T. Nakajima, and T. Nishizawa, 2017: Shortwave and longwave radiative forcings of aerosols depending on the vertical stratification of aerosols and clouds. AIP Conf. Proc. 1810, 090007, doi:10.1063/1.4975547.

[11] Kawamoto, K., and K. Suzuki, 2013: Difference in fractional occurrence of precipitation categories in terms of cloud properties. Radiation Processes in the Atmosphere and Ocean (IRS2012), AIP Conf. Proc. 1531, 424-427, doi:10.1063/1.4804797.

[10] Nakajima, T. Y., T. M. Nagao, H. Letu, H. Ishida and K. Suzuki, 2012: On the cloud observations in JAXA’s next coming satellite missions. Proc. SPIE, 8523, Remote Sensing of the Atmosphere, Clouds, and Precipitation IV, 852316 (November 13, 2012); doi:10.1117/12.977250.

[9] Matsui, T. N., K. Suzuki, T. Y. Nakajima, H. Letu, 2011: Interpretation of multi-wavelength-retrieved cloud droplet effective radii in terms of cloud vertical inhomogeneity using a spectral-bin microphysics cloud model and the radiative transfer computation. Proc. Geoscience and Remote Sensing Symposium (IGARSS) IEEE 2011 International, 3229-3232.

[8] Nakajima, T. Y., T. N. Matsui, H. Letu, H. Shimoda, K. Suzuki, G. L. Stephens, H. Ishida, N. Kikuchi, and T. Nakajima, 2010: Cloud sciences using satellite remote sensing, cloud growth model, and radiative transfer. Proc. SPIE, 7859, Remote Sensing of the Atmosphere and Clouds III, 785905 (October 28, 2010); doi:10.1117/12.869436.

[7] Suzuki, K., G. L. Stephens, T. Y. Nakajima, and S. C. van den Heever, 2009: Multi-sensor analysis of A-Train observations for investigating the warm cloud microphysical processes. Proc. AMS 34th Conference on Radar Meteorology, J7B.3, 155680.

[6] Nakajima, T. Y., K. Suzuki, T. Takemura, and T. Nakajima, 2008: Cloud growth process appeared in the global scale distribution of the cloud optical and microphysical properties retrieved from the satellite remote sensing. Proc. SPIE, 7152, Remote Sensing of the Atmosphere and Clouds II, 715205 (December 5, 2008); doi:10.1117/12.804941.

[5] Nakajima, T. Y., K. Suzuki, and T. Nakajima, 2006: Cloud microphysical properties retrieved from MODIS sub-sampling radiance dataset over the extended GAME region, Proc. SPIE, 6408, Remote Sensing of the Atmosphere and Clouds, 64080E (December 1, 2006); doi:10.1117/12.692683.

[4] Suzuki, K., T. Nakajima, T. Y. Nakajima, H. Masunaga, T. Matsui, A. P. Khain, 2006: Characteristics of water cloud optical property as simulated by a non-hydrostatic spectral microphysics cloud model. Proc. AMS 12th Conference on Cloud Physics and Atmospheric Radiation, J2.8, 112753.

[3] Suzuki, K., T. Nakajima, A. Numaguti, T. Takemura, K. Kawamoto, and A. Higurashi, 2002: GCM-simulated and satellite-retrieved cloud-aerosol interaction. Proc. AMS 11th Conference on Cloud Physics and Atmospheric Radiation. P3.16.

[2] Suzuki, K., T. Nakajima, A. Numaguti, T. Takemura, K. Kawamoto, and A. Higurashi, 2001: Effect of aerosol on cloud field with satellite-derived data and GCM simulation, Proc. SPIE, 4150, Optical Remote Sensing of the Atmosphere and Clouds II, 349 (February 21, 2001); doi:10.1117/12.416976.

[1] Takemura, T., H. Okamoto, A. Numaguti, K. Suzuki, A. Higurashi, and T. Nakajima, 2001: Global three-dimensional simulation and radiative forcing of various aerosol species with GCM, Proc. SPIE, 4150, Optical Remote Sensing of the Atmosphere and Clouds II, 249 (February 21, 2001); doi:10.1117/12.416964.




書籍における章(査読なし):

[1] Suzuki, K., 2008: Cloud microphysical modeling, Meteorological Research Note “Aerosol effect on climate and atmospheric environment” (Eds. T. Nakajima and T. Hayasaka), 218, 123-138 (in Japanese).